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Abstract

We found the asymptotic solutions at low and high temperatures of the partition function of a general one-dimensional
binary alloy. As a particular application, we considered the thermodynamic properties of quasiperiodic Fibonacci
lattices. We showed that, at low temperatures, the quasiperiodicity produces an extra peak in the specific heat when

plotted versus temperature.

1. Introduction and model

Great attention has been devoted to the study of
physical properties of quasiperiodic systems in one-
dimensional (1D) lattices in connection with the
discovery of icosahedral symmetry in quenched
Al-Mn [1] and with experiments in quasiperiodic
superstructures [ 2—4]. The Fibonacci lattice, which
is constructed by arranging two different building
blocks A and B in a Fibonacci sequence, has be-
come a standard model in the study of these sys-
tems. The Fibonacci sequence S, is obtained by the
recursion relation S, = {S,S,_} for [ > 1, with
So={B} and S, ={A}. One has S, ={BA},
Sy ={ABA}, S, = {BAABA}, Ss = {ABABAAB-
A}, and so on. The Fibonacci number F,, , is the
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total number of elements in S;,; and obeys the
recursion relation F,,, = F;_; + F; for | = 1, with
Fo=F =1

The generalized Fibonacci lattices in which the
two building blocks A4 and B are arranged in
the generalized Fibonacci sequence are straight-
forward generalizations of the Fibonacci lattice.
The generalized Fibonacci sequence S5" is given
recursively by

Sivh = {8187}, (1)

with S, = {B} and S; = {A} for [ > 1, and m and
n positive integers.

The generalized Fibonacci number Fi., is the
total number of building blocks 4 and B in S{%1,
which obeys the recursion relation

Fiyy =mF_, + nF, (2)
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for I = 1 with Fy = F; = 1. The relative proportion
of blocks of type A is given by

Py = lim Ny ~ lim 1
mnn*l“’o@ij”i’N(B’)_‘l—’lF[+F1_1
m,n
1 + z(m,n)

where N¥' (NY) is the number of blocks of type
A (B) and t(m,n) = F;/F,_; is the [th rational ap-
proximant to the “mean”. It is easy to show that in
the limit /- oo, t(m,n) tends to 3[n+ (n® +
4m?)!/?]. The Fibonacci sequence with the golden
mean is obtained by putting m = n = 1 and then
(L1 =(1+ /52

The electronic and phonon spectra of quasi-
periodic Fibonacci lattices have been studied in
Refs. [5-15]. The thermodynamic properties of
a bond-diluted Ising model on a Finonacci lattice
at zero magnetic field and equal concentration of
atoms 1 and 2 have been investigated by Ghosh
[16,17]. When these concentrations are different,
the chemical potential has to be taken into account,
which is equivalent to considering an external
magnetic field. In this paper, we extend Ghosh’s
calculations to include different concentrations of
atoms or, equivalently, the presence of a magnetic
field.

Let us consider an alloy consisting of two types
of atoms, 1 and 2, lying on a 1D chain in any order
and with an arbitrary interaction between nearest
atoms. We denote by V,4(i) the interaction energy
between atom x (which can be either 1 or 2) on site
i and atom f ( = 1,2) on site i + 1. By symmetry,
these interaction energies verify V,;(i) = V,(i). The
Hamiltonian of the system is given by

N
H :%Z {Vll{i)('i('iﬂ + Vsl —¢ivy)

+ Vo () (1 —c¢) vy + Vaal(iXl —c)l *('i*l)}s
4)

where ¢; is equal to 1 if site i is occupied with an
atom of type 1 and equal to 0 if the atom is of type
2; see, e.g. Ref. [18]. It is convenient to replace ¢;
by ¢; = (g; + 1)/2, where o, takes the values + 1.

With this transformation the Hamiltonian becomes
N N )
H=H0-— Z Q)jO'j— Z Wio-jo-j+17 (5)
i=1 j=1

where H, is a constant, independent of the atomic
configuration, and does not enter into calculations;
4W; = — Vi () — Va2 () + 2V1a()) is the ex-
change energy between nearest atoms (when
Via < (Vi + Vs,)/2, atoms 1 and 2 tend to be
situated alternately) and 4¢; = Vy,(j) — Vi1{)).
Note that the appearance of the local field @; in Eq.
(5) is produced by the breaking of the translational
symmetry in the inhomogeneous model.

The conservation of the atoms of the system is
defined by the following conditions:

N
Y 6;=(2Co — N, (6)
j=1

where Co, = N{/N is the concentration of atoms of
type 1, and N is the total number of atoms.

2. Method of solution

The partition function of the system is given by
N
Z= ) - ) CXP{/)’ Y (1 + ®)a;
=+ 1 oy=+1 j=1

+ 4 Z Wj“jffjﬂ}» (7)

Jj=1

where = 1/kT is the inverse temperature, and p
is the chemical potential, which we will find from

Eq. (6).
In the case of a transactional invariant lattice
W, =W,= - =Wy=W, & =constant) the

partition function Z can be obtained by means of
the transfer matrix technique [19]. Following this
method, the exponential in Eq. (7) can be factored
into terms each involving only two neighbouring
atoms and the partition function Z corresponding
to a closed sequence of N atoms (¢, = oy+ ) can be
written in the following form:

Z= Y - Y Pi01,02)P:(0;,03)- - Py(on,01)
1= +1  oy=x1
=TI'P1P2"‘PN=TFP. (8)
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In this expression Pjo;,0;,,)=exp(jio; +
W;o;6;+,) are the elements of a two-by-two trans-
fer matrix

p_(BLL B -1
PTAR(= 1) B-1 - 1)

etitWi =W
=<e‘f‘j—Wj Z‘ﬂm‘vj)v ®)
where fi; = f(u + @;) and W, = pW,.

In the homogeneous case, all the transfer ma-
trices P; are equal and so P = P}. Thus, the calcu-
lation of the trace of the matrix P is equivalent to
finding the maximum eigenvalue of the matrix P;.
Unfortunately, for alloys with inhomogeneous in-
teractions the transfer matrices P; do not commute
and we have to calculate the product of all the
transfer matrices. This is the main difficulty of this
problem.

We can avoid this difficulty in two limiting cases.
These two cases correspond to very low and very
high temperatures. We can transform the partition

function Eq. (7) and write it in the form (see appen-
dix)

N
Z=K(uT) ] cosh W,. (10)
i=1

Here

2
K(u,T)= Z ai(s1,52)a2(82,83) - an(sy, 5,)

lg b —
;=1

N
xexp{z oj,aj}, (11)

J=1

where  aj(s;,s;+1) =1 + ¢ expin(s; +5,,,) and
¢; = tanh W,

When the number of atoms of type 1 and 2 is the
same we have y=@; =0, and when N -» «© we
recover the well-known result for the in-
homogeneous Ising model at zero magnetic field
[207:

N
Zo =2 ] cosh W,. (12)
j=1
At very low temperatures, W, > | and g~ 1. We
can rotate the matrix a(s;, s;. ;) and obtain a new

commuting set of transfer matrices a; of the form
a;=
<2 exp[ — 30 + flj+1)] 0 )
0 2expl3(i; + 1))
(13)

So, for large N, we find that the partition function
Z is given by

N
Z,=Zoexp B(Nu + Z D). (14)
j=1
At high temperatures, we have W; < 1, ¢; ~ 0 and
a;(sj,s;+1) ~ 1, thus K(u,T)= ZNH;’:I cosh fi;

and

N
Z,=Z, Y coshj;. (15)
i=1

Let us consider now the case of the generalized
Fibonacci lattice. We assume that each function
V,(j) can take one of the two values V,, (A) or
V,o'(B). Consequently, W; and @; will also take two
possible values W, Wy and @4, ®3. The sequence
of these quantities can be obtained from the defin-
ing recursive relation, Eq. (1). Then, Eq. (14), which
gives us the partition function at low temperatures,
becomes, for the Fibonacci lattice,

Z8 = Zh exp{NB[u + Py, @4 + (1 — P, )]},
(16)

where

Z§ = 2V(cosh W )PV (cosh Wg)!! “Fma¥  (17)

Analogously, at high temperatures, Eq. (15) be-
comes

Zy = Zg[cosh B(u + P4) 1 m Y
x [cosh B(u + @4)] 1 FmrIV, (18)

These partition functions depend on the chem-
ical potential x and can be calculated through the
formula

N(2Cy—1)=01InZ/o(fw), (19)

which follows from Eq. (6) and which ensures con-
servation of the two types of atoms of the system.
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Substituting Eq. (17), for low temperatures, and Eq.
(18), for high temperatures, in Eq. (19), we find p as
a function of C,. At the high temperature, for
example, u is implicitly given by

Py.ntanh (u + @4) + (1 — P, ,) tanh fi(u + dp)
=2Co,— 1. (20)

The knowledge of an explicit expression for the
partition function, Egs. (16) and (18), allows us to
calculate any other physical quantities. We are in-
terested in the free energy per site F, which is given
by

NT'FU = o — [+ Pnn®s + (1 = P, @], (21)
at low temperatures, and by
N7'Fi = ¢o — B! {Pn., In[cosh B(u + @,)]
+ (1 — P,.,) In[cosh B(u + ®)]}, (22)
at high temperatures, where ¢, is defined as
$o= — B~ '{P,.,In[2cosh W,]
+(1 — P, In[2cosh Wg]}. (23)

The influence of the quasiperiodic lattice on the
thermodynamic properties produces a peak in the
specific heat at low temperatures, never reported
before. This peak appears even in the C, = 0.5 case,
where we can consider the exactly solvable Ising
model. In this case, the specific heat C can be
calculated by deriving Eq. (23), with x =0 and
Co = 0.5, twice with respect to temperature. We
obtain

C

N P, ,W3cosh™2W,
B

+(1 — P, )W3cosh™ 2 Wy (24)

3. Numerical results and conclusions

In Fig. 1, we plot the specific heat C at the zero
field, given by Eq. (24), as a function of normalized
temperature, x = kT/W,, for four values of the
parameters v = Wy/W, and m, n. The dashed line
corresponds to v =0.5, m =1 and n = 1; the full

0.5

C/kN

Fig. 1. Specific heat as a function of temperature, x = kT/W,,
for a Fibonacci lattice with parameters v=05 m=1 n=1
(dashed line); v=02, m=1, n=1 (full line); v =02, m=1,
n = 3 (dotted line), and for a regular lattice (long-dashed line).

linetov =0.2,m = 1 and n = 1; and the dotted line
tov =0.2,m = 1 and n = 3. The long-dashed line is
for v = Wg/W, = 1 and so corresponds to a regular
lattice.

Note that the main peak in the specific heat for
the Fibonacci lattice is smaller and nearer lower
temperatures than the peak corresponding to the
ordinary Ising model [19]. However, the main dif-
ference between both models is the extra
peak that appears at very low temperatures for
the Fibonacci lattice. This extra peak vanishes
when n increases (or, to be more precise, when
P, ., decreases). So, the quasiperiodicity of the
lattice produces a small, but fairly atypical and
interesting behaviour of the specific heat at low
temperatures.
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Appendix

In this appendix we show how to calculate Eq. (8)
by an iteration procedure. Let us start from
Z? = Tr P,P,. We can directly check that

Z(z) :TI‘ PIPZ ZTI' LlGleGz, (Al)
where
cosh fi;  —sinhg;

L= o ’ .

i < —sinh i;  cosh g ) A2

2 cosh W; 0

G = J ~ . .

! ( 0 2sinh Wj> (A-3)

We can write Eq. (A.1) in the form

Z(z) = Z (Ll)kq(Gl)qm(LZ)mt(GZ)tks (A4)

kqmt

where (L), is the matrix element of L;. Let us write
this matrix elements of the operator L; in the bi-
linear form

(Likg= Y 2ViVE, (A.5)

IV

i=1

where V¥ is the jth eigenvector of the operator L;,
and 1 its corresponding eigenvalue. From Eq.
(A.5), we obtain that the transfer matrix L; has the
following eigenvalues and eigenvectors:

M) =exp(— ) A = exp(iL;), (A.6)

1 /1 1 1
Vi=—=|.} Vi=— . .
] ﬁ(l) ’ V/2( - 1> (A7
Analogously,

2
(Gj)qm = Z V?”U?U:'"’ (A.8)
i=1

t

where 7/ are the eigenvectors and U the eigen-
values of the operator G;:

3 = 2 cosh W, v = 2 sinh W, (A9)

a-() ()

Substituting Egs. (A.5) and (A.9) in Eq. (A.4), we
obtain

(A.10)

(2) _ (1)72(2),,(1),,(2)
z = Z As) Asy Yu Vi O, Q1,5:95:1,Q05, »

s1s2l1lz

(A.11)

where @, ,, = Y2_, Ui V.. Using Egs. (A.6), (A7),
(A.9) and (A.10), we find

1
NG

where 9, , is the delta of Kronecker. We can finally
arrive at the following expression:

O = (A.12)

(‘5t,~,1 - 51j,2 expins;),

Z® = cosh Wl cosh Wz Z /lg)/lg)al(sl,82)02(52751),

5182

(A.13)

where a;(s;,s;) =1+ ¢;exp in{s; + 5;) and ¢; =
75"y, The formula (A.13) can be immediately
generalized to the case Z = Z™.
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